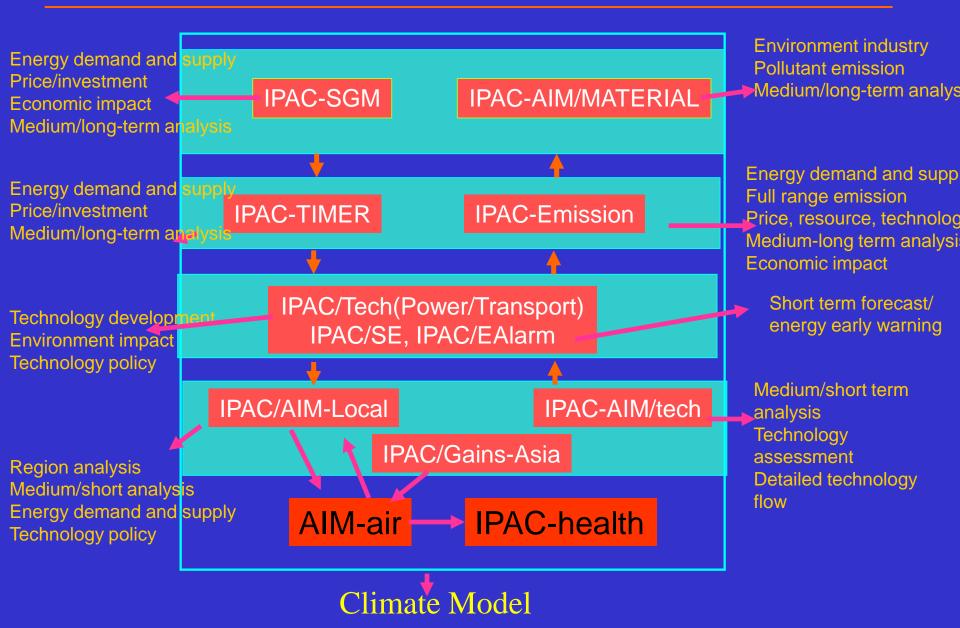

Co-benefit Analysis

Energy and Emission Scenario up to 2050 for China


Jiang Kejun Energy Research Institute

Content

- Scenarios: how to reach enhanced low carbon scenario
- Cost/benefit
- Technology roadmap
- Policy roadmap
- Co-benefit

Framework of Integrated Policy Model for China (IPAC)

ERI, China

Methodology framework

Global Model IPAC-Emission

Global energy demand and supply Global GHG Emission Global Target Burden sharing Energy import/export Energy Price Reduction cost

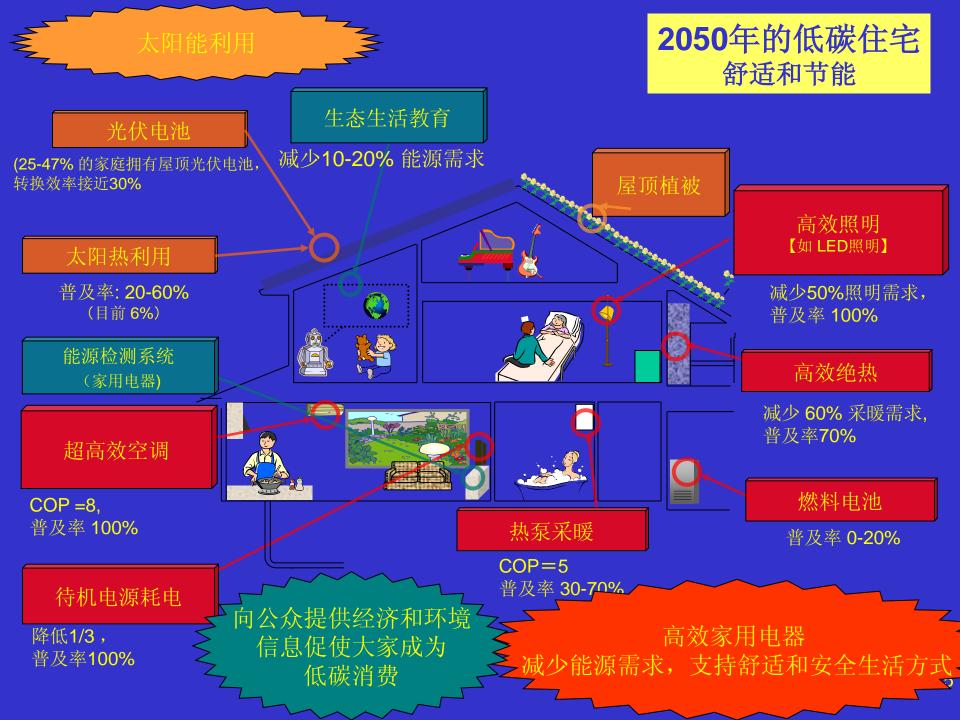
China energy and emission scenarios Energy demand by sectors Energy supply Reduction cost

Future economic sector detail Energy intensive industry Reduction cost

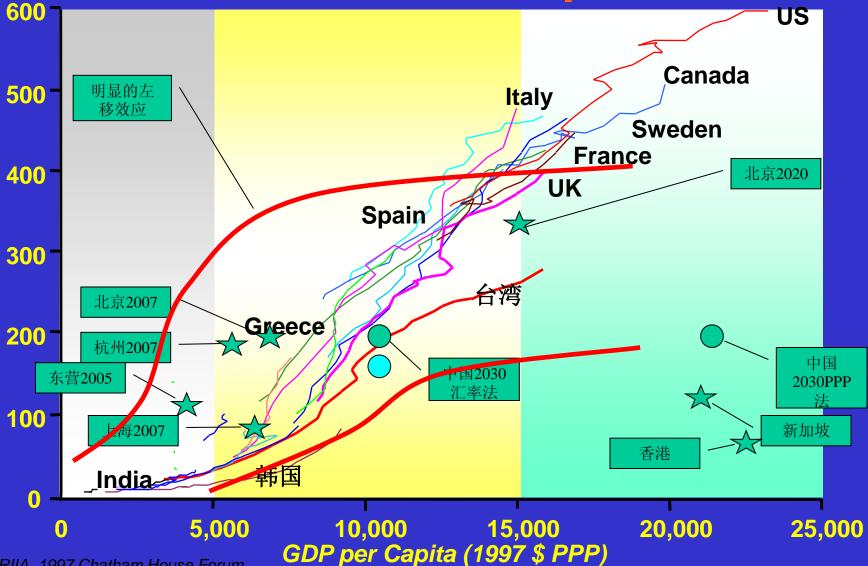
Energy economic model IPAC-CGE Energy technology model IPAC-AIM/technology

Products output in major sectors, Low Carbon and ELC

	Unit	2005	2020	2030	2040	2050
Steel	Million ton	355	610	570	440	360
Cement	Million ton	1060	1600	1600	1200	900
Glass	Million cases	399	650	690	670	580
Copper	Million ton	2.6	7	7	6.5	4.6
Ammonia	Million ton	8.51	16	16	15	12
Ethylene	Million ton	5.1	7.2	7	6.5	5.5
Soda Ash	Million ton	14.67	23	24.5	23.5	22
Casutic	Million ton	12.64	24	25	25	24
Paper	Million ton	62.05	110	115	120	120
Fertilize	Million ton	52.2	61	61	61	61
Aluminum	Million ton	7.56	34	36	36	33
Paper	Million ton	46.3	50	50	50	45
Calcium c	Million ton	8.5	10	8	7	4


Population

	2005	2010	2020	2030	2040	2050
Population	1307.56	1360.00	1440.00	1470.00	1470.00	1440.00
Urbanization rate	43%	49%	63%	70%	74%	79%
Urban Population	562.12	666.40	907.20	1029.00	1087.80	1137.60
Person per Household	2.96	2.88	2.80	2.75	2.70	2.65
Urban Household	189.91	221.94	288.00	336.76	364.78	380.38
Rural Population	745.44	693.60	532.80	441.00	382.20	302.40
Person per Household	4.08	3.80	3.50	3.40	3.20	3.00
Rural Household	182.71	189.68	181.03	159.97	151.59	144.00


Parameter of Urban Household: by 2030 same life quality as

that in developed countries

Service	Unit	Service			
		2020	2030	2050	
Household, million		288	336	380	
Share of HH with space heating		42%	44%	48%	
Index of space heating intensity, 2000=1		1.35	1.5	1.6	
Index of space heating time, 2000=1		1.33	1.36	1.4	
Share of building with 50% efficiency standard		20%	45%	65%	
Ownership of Air Conditioner		130	180	260	
Index of Air conditioner intensity, 2000=1		1.3	1.4	1.6	
Index of air conditioner utilization time, 2000=1		1.6	1.8	2.2	
Ownership of Refrigerator	per 100HH	100	120	130	
Average space of refregeretor	L	250	310	390	
Efficiency of Refregeretor		0.8kWh/天	0.8kWh/天	0.7kWh/天	
Ownership of washing machine	per 100HH	100	100	100	
times to use washing machine per week		5.4	8	8	
Ownership of TV	per 100HH	180	220	290	
Average Capacity of TV		320W	300W	280	
Hours per TV per day		3.5	3.2	2.9	
Penetration rate of CFL		100%	100%	100%	
Light per HH		14	21	27	
Ownership of Water heater	per 100HH	100%	100%	100%	
Ownership of Solar heater	per 100HH	18%	25%	33%	
Ownership of Electric cooking	per 100HH	130	140	260	
Hours per day of electric cooking	Minutes	12	30	50	
Capacity of other electric applicance	W	1500W	1800W	2300W	
Hours of other electric appliance	Minutes	50	80	100	

机动车普及率 Car Ownership

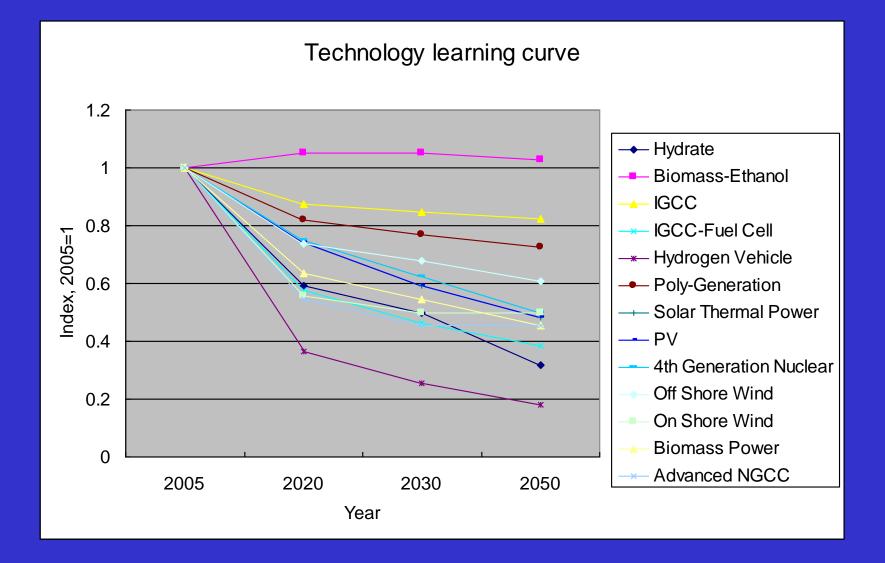
Source: RIIA, 1997 Chatham House Forum

辆/千人

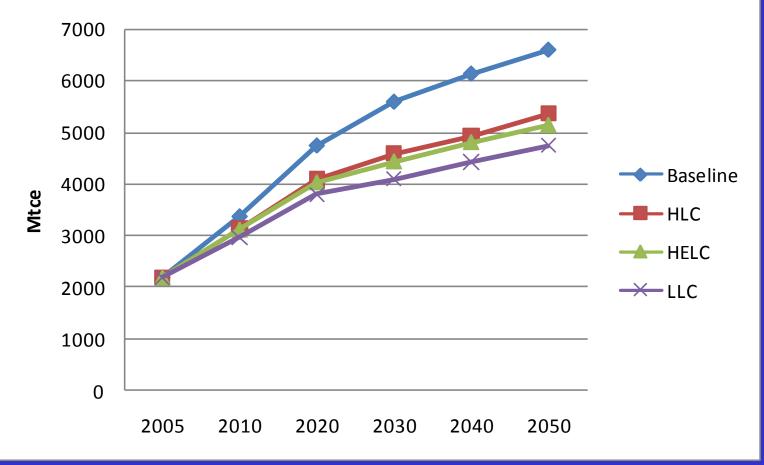
Vehicle fleet, Low Carbon scenario, 10000

	2000	2005	2010	2020	2030	2040	2050
Total Vehicle	1609	3160	6227	18583	36318	51717	55810
Passenger	854	2132	4299	15504	32323	46083	48922
Freight	716	1027	1928	3079	3995	5634	6888
Car	670	1919	3921	14982	31558	45075	47662
Family Car	57	1100	3145	14032	30454	43675	46062
Other Car	613	819	776	950	1104	1400	1600
Mini-Bus	108	131	265	313	383	524	214
Large Bus	75.3293	82.3080335	113.4	208.8	382.5	483.84	1045.8
Bus	184	214	378	522	765	1008	1260
Motor Cycle	3771	6582	9848	10613	11193	11193	10634

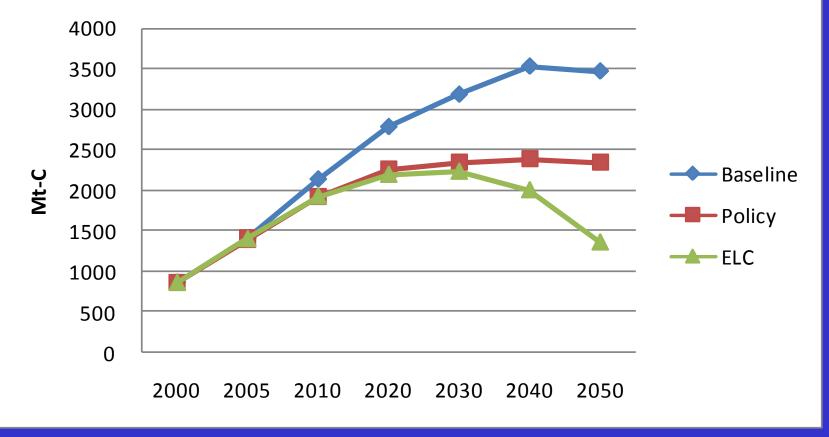
Transport, Low carbon scenario

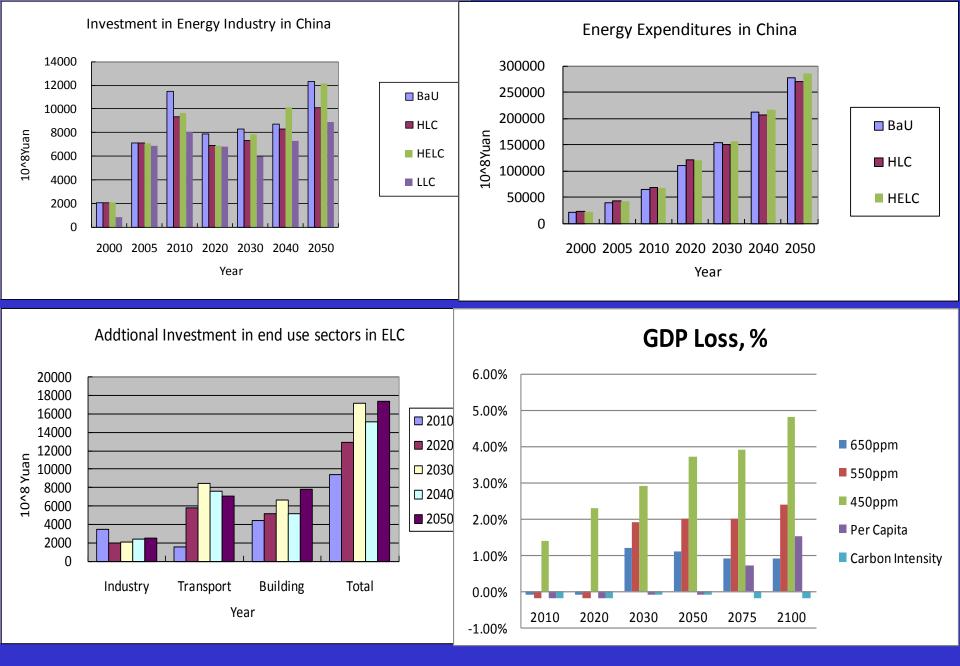

		2005	2010	2020	2030	2040	2050
Family car ownership, per 100HH	Urban	3.37	14	36	65	77	78
	Rural	0.08	0.2	8	38	70	90
Family car annual travel distance, km		9500	9500	9300	8635	8300	7480
Average engin size of family cars, litter		1.7	1.6	1.6	1.6	1.5	1.4
Fuel efficiency of car, L/100km		9.2	8.9	7.1	5.9	4.8	4.1
Share of MRT in total traffic volume, %		0.011	0.016	0.025	0.046	0.1	0.21
Share of Biofuel, %		1.10%	1.30%	4.1%	7.70%	12%	13%
Share of electric car, %		0%	0.12%	3.2%	6.80%	12.5%	19.8%
Share of fuel cell car, %		0%	0%	0.80%	1.60%	4.70%	7.90%

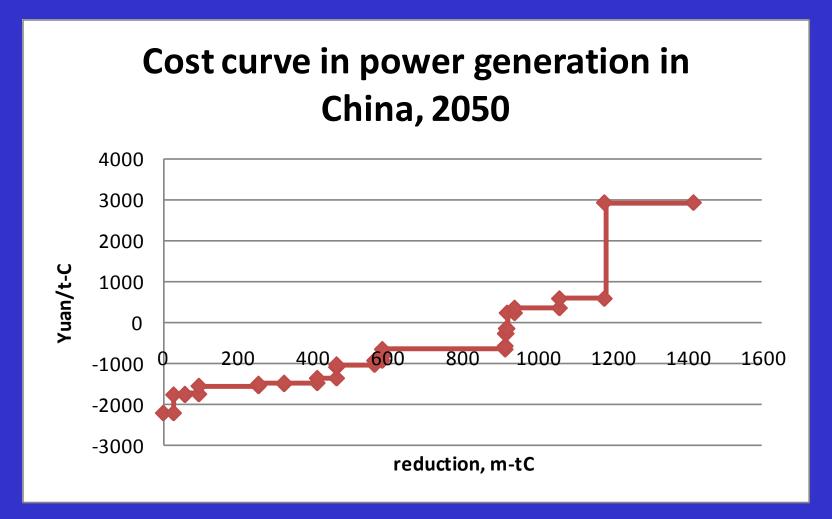
Comparison of BaU and Low Carbon Scenario

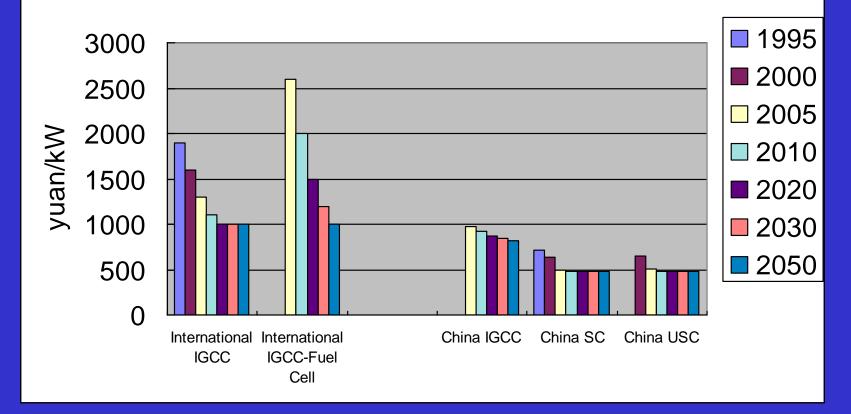

nology	Efficiency	Ratio in	n 2030	Ratio	in 2050	Note
		Reference	Low	Reference	Low	
		scenario	carbon	scenario	carbon	
			scenario		Scenario	
ed coke	11900Mcal/toncoke,withgasproduction of1340Mcal	58%	50%	77%	42%	Fully localization
generation en	10300Mcal/toncoke,withgasproductionof1420Mcal	17%	47%	23%	58%	
nching	2.4 Mcal/ ton J Recovery	80%	100%	90%	100%	Localization, with promising prospect of market potential
g furnace ternational d level	390Mcal/tonsinterlump, saving42% of energy	45%	85%	67%	90%	Needed to be localization
urnace of onal d level	3750 Mcal/ ton hot metal, saving 21% of energy	40%	65%	64%	87%	
s recovery	Heat and electricity recovery 0.7 Mcal/ ton hot metal	44%	70%	85%	100%	
ous and	Saving 86% of energy	90%	98%	85%	95%	

Unit energy use for key products, LCS Scenario

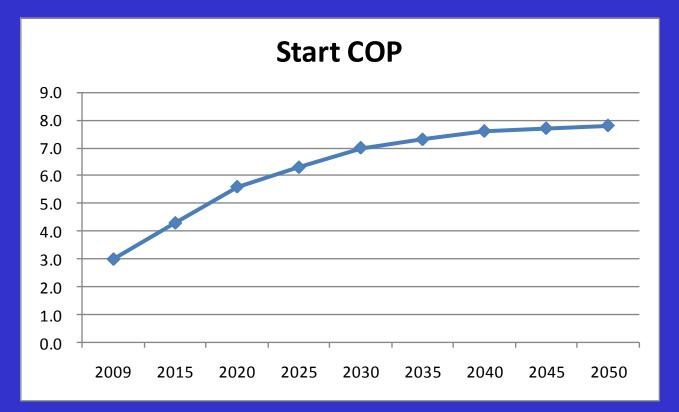

	Unit	2005	2020	2030	2040	2050
Steel	Kgce/t	760	650	564	554	545
Cement	Kgce/t	132	101	86	81	77
Glass	Kgce/Weight Cases	24	18	14.5	13.8	13.1
Brick	Kgce/万块	685	466	433	421	408
Ammonia	Kgce/t	1645	1328	1189	1141	1096
Ethylene	Kgce/t	1092	796	713	693	672
Soda Ash	Kgce/t	340	310	290	284	279
Casutic	Kgce/t	1410	990	890	868	851
Calcium carbide	Kgce/t	1482	1304	1215	1201	1193
Copper	Kgce/t	1273	1063	931	877	827
Aluminum	kWh/t	14320	12870	12170	11923	11877
Paper	Kgce/t	1047	840	761	721	686
Electricity fossil fuel	Gce/kWh	350	305	287	274	264

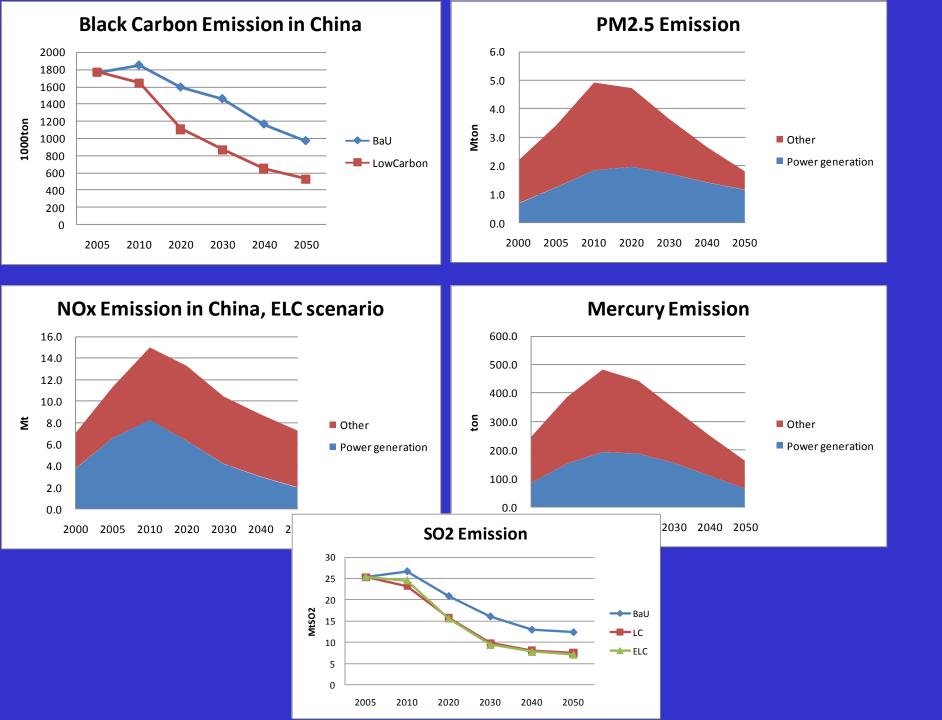



Primary Energy Demand

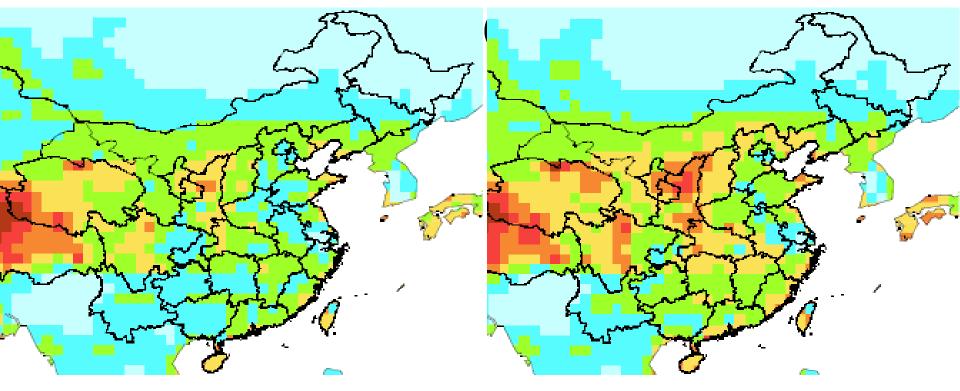

CO2 Emission in China

Fixed Unit Ivestment

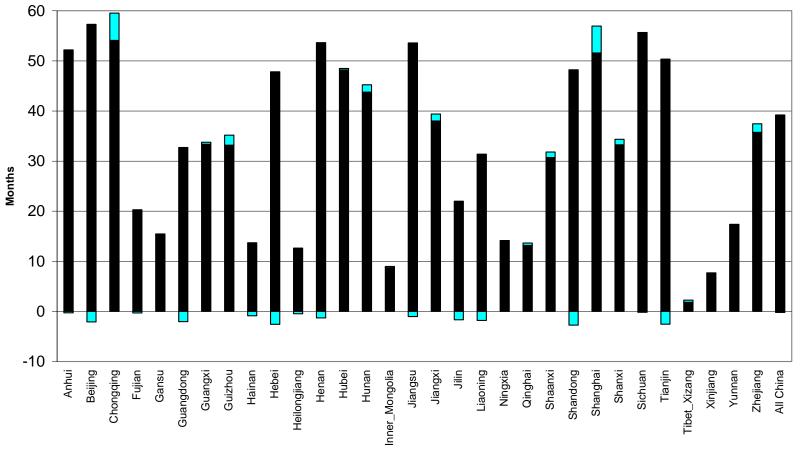



28 key technologies in the enhanced low carbon scenario in China

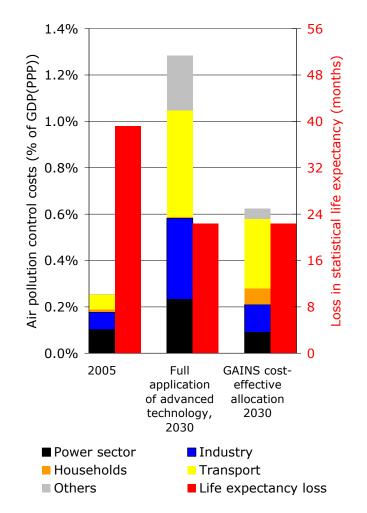
No.	Sector	Technology	Description	Note
1	Industry		High efficiency furnace,	Nearly in
	technology	efficiency	kiln, waste heat recovery	market
		equipment	system, high efficiency	
			process technologies,	
			advanced electric motor	
2		New manufacture		
		process technology		
		for cement and steel		
3		CCS	In cement, steel making,	
			refinery, ethylene	
			manufacture	
4	Transport	Super high efficiency		
	_	diesel vehicle	engine	
5	_	Electric car		
6	4	Fuel cell car		
7		High efficiency	e e ,	
	4	aircraft	efficiency	I
8		Bio-fuel aircraft		I
9	Building	Super high efficiency	With COP>7	
	-	air-conditioner		
10	-	LED lighting		
11			Solar PV/Wind/Solar hot	
	-	energy system	water and space heating	
12	-	Heat pumps		Mature
13		High isolation		Mature
1.4	-	building		N da turra
14		High efficiency		Mature
15	Power	electric appliance IGCC/Poly-	With efficiency above 55%	before 2030
12	generation	Generation	with efficiency above 55%	
16	generation	IGCC/Fuel cell	With efficiency above 60%	
10	4	On shore Wind	what enterency above 00/a	Mature
17	4	Off shore wind		Mature
10				before 2020
19	1	Solar PV		201010 2020
20	1	Solar Thermal		
21	1	4 th Generation		
		4 Generation Nuclear		
22	4	Advanced NGCC	With efficiency above 65%	
22	4	Biomass IGCC	with efficiency above 05%	
23 24	4	CCS in power		
24		generation		
25	Alternative fuels	Second generation		
2.5	Alternative ruels	bio-ethanol		
26	1	Bio-diesel	Vehicles, ships, vessels	
27	Grid	Smart grid		
28	Circulating	Recycle, reuse,		
	tecnologies	reducing material		
	is chore bies	use		
			Π	


Policy roadmap: Super high efficiency air conditioner

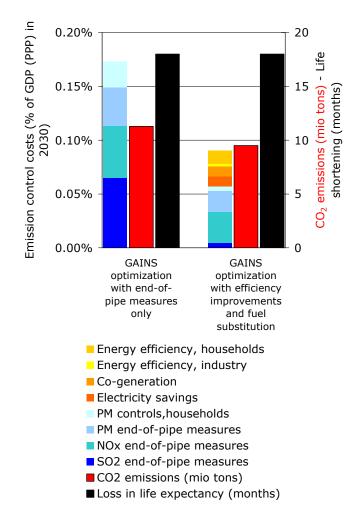
- Efficiency Standard: COP, MEPS
- Government Planning
- Subsidy



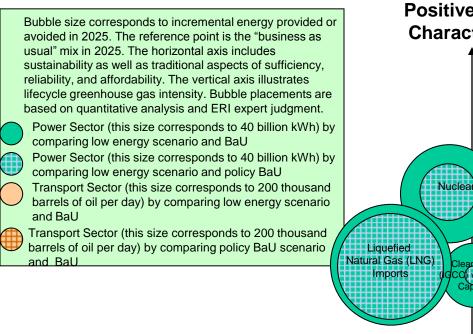
Computed health-relevant ozone concentrations for China (SOMO35, i.e., Sum of daily 8-hour mean concentrations exceeding 35 ppb) computed for 2005


Loss in statistical life expectancy in China attributable to outdoor pollution of PM2.5 in 2005 and the baseline projection for 2030

■ 2005 ■ Change to 2030 for baseline projection


The GAINS cost-effectiveness approach can reduce costs for improving air quality by up to 50%

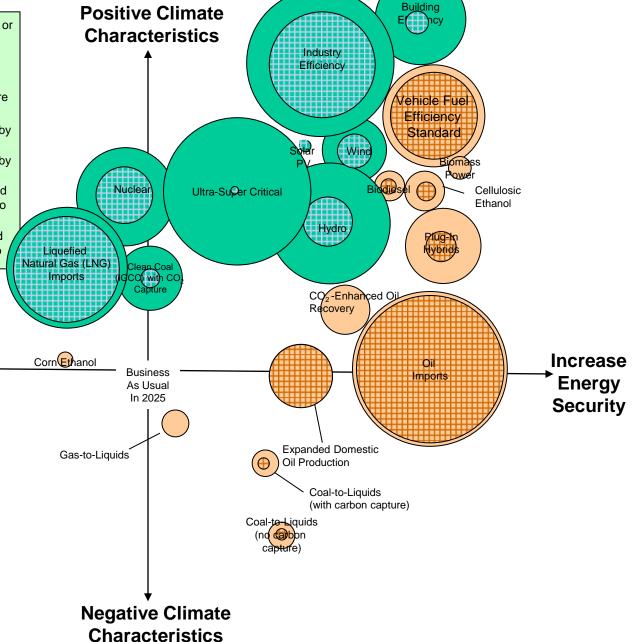
- Advanced emission control technologies are available to maintain acceptable levels of air quality despite the pressure from growing economic activities.
- The optimization mode of the GAINS model can identify the most cost-effective portfolio of measures to improve air quality.

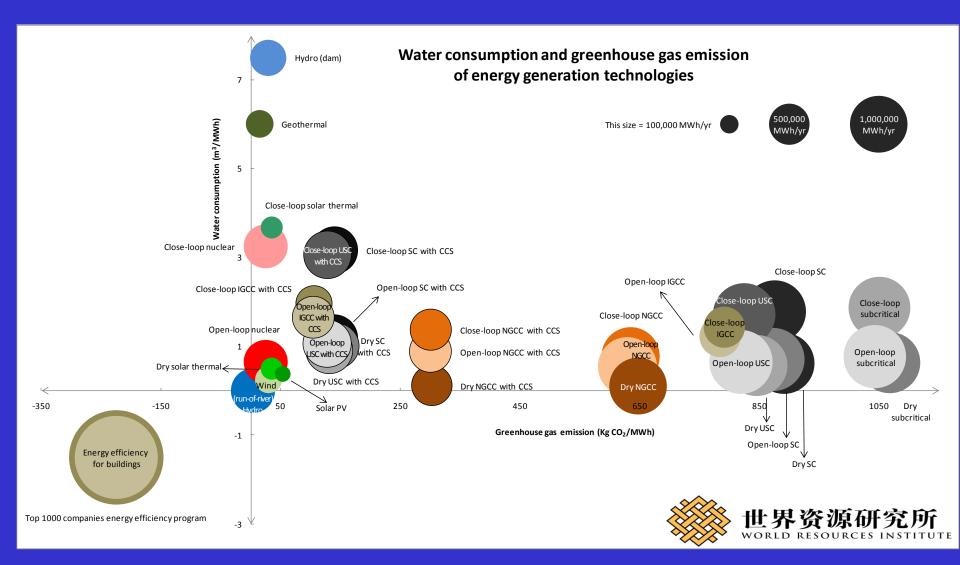


Well-designed air pollution control strategies can also reduce GHG emissions

- Measures exist that simultaneously reduce emissions of air pollutants and greenhouse gases.
- GAINS identifies cost-effective measures that not only improve air quality but also reduce greenhouse gas emissions.
- Such measures also form part of a cost-effective air pollution control strategy

A Snapshot of Selected China Energy Options Today: Climate and Energy Security Impacts and Tradeoffs in 2025





Reduce

For specific details on the assumptions underlying the options on this chart, go to <u>www.wri.org/usenergyoptions</u>

Revised 7/10/2008

